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1 Prime Factorization Sequences

In the last article we introduced the Beurling generalized integers, which can be represented as
a sequence of real numbers or as a multiplication function over the natural numbers. These two
representations are isomorphic, though we really only showed how to get a multiplication function
from a given sequence of real numbers. To go in the opposite direction, we actually need to introduce
a third representation: a sequence of prime factorizations.

To discuss prime factorizations, we need to have a way of representing the factorizations as
objects themselves. One representation we can use is exponent vectors, which are best explained
with examples (see Table 1).

This notation invites analogies to a vector space, although the natural numbers do not form a
field so we do not have a vector space. Nonetheless, some typical operations have natural corre-
spondence. Multiplication corresponds to vector addition and exponentiation corresponds to scalar
multiplication. The prime numbers correspond to unit (basis) vectors in an infinite dimensional
space. Since the vectors live in an infinite dimensional space, we require a finite representation.
In the table above the vectors have their tail sequences of zeros cut off, but generally this isnt the
most compact representation. We also write factorizations as sets of (prime, exponent) pairs eg.

〈2, 0, 5〉 corresponds to {(1, 2), (3, 5)}

This pair representation is akin to writing a vector as a linear combination of basis vectors. The set
of pairs representation tends to be more convenient when a vector is sparse (ie. it has many zeros

Table 1: Comparing representations of the sequence of natural numbers
Natural Number Prime Factorization Sequence of Prime Exponents Exponent Vector (Truncated Zeros)

1 none 0,0,0,0,0,0,... 〈0〉
2 2 1,0,0,0,0,0,... 〈1〉
3 3 0,1,0,0,0,0,... 〈0, 1〉
4 22 2,0,0,0,0,0,... 〈2〉
5 5 0,0,1,0,0,0,... 〈0, 0, 1〉
6 2 · 3 1,1,0,0,0,0,... 〈1, 1〉
7 7 0,0,0,1,0,0,... 〈0, 0, 0, 1〉
8 23 3,0,0,0,0,0,... 〈3〉
9 32 0,2,0,0,0,0,... 〈0, 2〉
10 2 · 5 1,0,1,0,0,0,... 〈1, 0, 1〉
11 11 0,0,0,0,1,0,... 〈0, 0, 0, 0, 1〉
12 22 · 3 2,1,0,0,0,0,... 〈2, 1〉

1



Table 2: Comparing factorization orderings of the natural numbers and the odds
Natural Number Natural Vector Odd Vector Odd Number

1 〈0〉 〈0〉 1

2 〈1〉 〈1〉 3

3 〈0, 1〉 〈0, 1〉 5

4 〈2〉 〈0, 0, 1〉 7

5 〈0, 0, 1〉 〈2〉 9

6 〈1, 1〉 〈0, 0, 0, 1〉 11

7 〈0, 0, 0, 1〉 〈0, 0, 0, 0, 1〉 13

8 〈3〉 〈1, 1〉 15

9 〈0, 2〉 {(6,1)} 17

10 〈1, 0, 1〉 {(7,1)} 19

11 〈0, 0, 0, 0, 1〉 〈1, 0, 1〉 21

12 〈2, 1〉 {(8,1)} 23

between non-zero elements – it contains a large prime, but is a relatively small number). Moreover,
the pair representation makes sense when discussing powers of primes because then each number
has only one pair (in this case representation is really as concise as is possible). Since multiplication
can be chained, we can consider it as a map from multisets (sets where multiplicity is allowed) of
natural numbers to a natural number, instead of a map just from pairs of natural numbers to a
natural number. If we restrict the domain to multisets of prime numbers, then the uniqueness of
prime factorization guarantees that this map is injective – only one item in the domain maps to
some number in the range. We could also define the map from the singleton multiset (of a prime
number) as an identity mapping, which would allow the map to be surjective. This new form of
the multiplication function is thus a bijection with the natural numbers as its range, which means
that it is equivalent to a sequence: an ordering of its domain. So every multiplication function
corresponds to an ordering of prime factorizations. For example, we can compare the orderings of
the natural numbers and the odd numbers as in Table 2.

We can consider a triangle of isomorphic representations of the Beurling generalized integers as
seen in Figure 1. We have shown that the multiplication functions and sequences of Factorizations
are isomorphic. We have also shown that sequences of real numbers determine multiplication
functions.

Figure 1: Isomorphism Triangle

Now quite obviously, a sequence of all factorizations determines the orderings of prime powers,
since these are just subsequences. In section 4 of the paper, “Beurling Zeta Functions, Generalised
Primes, and Fractal Membranes”, Lapidus and Hilberdink prove the isomorphism between orderings
of prime powers and the sequence of real numbers representation, which completes our isomorphism
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triangle. I shall reproduce their proof here (using some of their notations, which hopefully can be
inferred if I neglect to define them), which takes the form of two theorems and a lemma. Just
proving one direction, that an ordering of prime powers determines a sequence of real numbers,
should be sufficient to complete the isomorphism triangle. (As an aside, the basics of the proof
rely on using the ordering to pin values of any power of any prime pn between some power n of p1
and the next power n+1. I had always suspected such an approach could be used in this proof, but
my attempts failed in vain. For this reason the relative simplicity and the elegance of the following
proofs always impressed me.)

2 The Lapidus-Hilberdink Proof

Notes:

• This proof uses some elementary real analysis. If youre not interested, you can skim or skip
the proof and move on to the other posts in the series.

• For a given system of generalized integers, the authors use P to refer to the set of associated
primes (as real numbers). They use N to refer to the set of integers generated by P.

• This proof requires the infinitude of both primes and composites.

• This is largely a verbatim copy of their proof, with some small changes and my own notes
thrown in.

• For the proofs of each individual theorem/lemma I provide a digest in brackets [], mostly for
my own convenience as this article serves as a personal reference.

The first part of the proof comes from that the recognition that if a sequence of numbers is
defined as another sequence with each element taken to some fixed power greater than zero, then the
multiplication function remains the same. For example, with the squares of the natural numbers,
four times four equals 16, so m(2, 2) = 4. In general, if bn = aλn, then b−1(x) = a−1(x1/λ) and
multiplication for bn can be defined as:

m(x, y) = b−1(bx · by) = a−1((aλx · aλy)1/λ) = a−1(ax · ay)

It turns out the converse is true, if the multiplication function (and hence the factorization ordering)
is the same for two sequences of real numbers, then the sequences must be some power of each
other. (Note that the converse is only true assuming that we have in infinite number of composite
numbers.) Here is the exact theorem due to Lapidus and Hilberdink (with a nearly verbatim copy
of the proof):

2.1 Theorem:

Let P1 and P2 be two generalized prime systems with generalized integers N1 and N2 respectively.
If the orderings of N1 and N2 coincide, then P1 = Pλ2 for some λ > 0 and hence N1 = N λ

2 .
[Proof notes: bound pmk , q

m
k by powers of p1, q1 to n, n+ 1, take log. Now forms of pmk and qmk

are bounded by the same numbers n, n + 1 and we can use substitution to get ps and qs in same
inequality. Taking limit as m→∞ gives us our result.]
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2.2 Proof:

Denote the primes in P1 by p1, p2, . . ., and those in P2 by q1, q2, . . .. Let k,m ∈ N. Then pmk ∈
[pn1 , p

n
1 + 1) for some n ∈ N. Since N2 has the same ordering as N1 we also have qmk ∈ [qn1 , q

n
1 + 1).

Taking logs gives:

n ≤ mlog(pk)

log(p1)
< n+ 1 and n ≤ mlog(qk)

log(q1)
< n+ 1

ie. n = bmlog(pk)log(p1)
c = bmlog(qk)log(q1)

c. So we can relate the sequences qn and pn

mlog(pk)

log(p1)
− 1 < n ≤ mlog(qk)

log(q1)
< n+ 1 ≤ mlog(pk)

logp1
+ 1

and hence
log(pk)

log(p1)
− 1

m
<
log(qk)

log(q1)
<
log(pk)

log(p1)
+

1

m

This holds for all m, so letting m→∞ gives

log(pk)

log(p1)
=
log(qk)

log(q1)

i.e. pk = qλk , where λ = log(p1)
log(q1)

, and hence P1 = Pλ2 �

2.3 Axioms

Lapidus and Hilberdink note the subsequence of N as of powers of real numbers,

Q = {pn : p ∈ P, n ∈ N}

and remark that Q is isomorphic to N2 via the isomorphism pnm 7→ (m,n). They define three
axioms regarding the order Q imposes on N2, which correspond to the properties we defined for
multiplication earlier:

• A1: (m,n) ≤ (m,n) whenever both m ≤ m and n ≤ n, with strict inequality if n < n

• A2: (m,n) ≤ (mn) implies (m, kn) ≤ (m, kn) for every k ∈ N, with strict inequality if
(m,n) < (m,n).

• A3: Finiteness: (i) For all n ∈ N, there exists k ∈ N such that (1, n) < (k, 1). (ii) For all
m ∈ N, there exists l ∈ N such that (m, 1) < (1, l).

A3 corresponds to having infinitely many composites and infinitely many primes, so that we
have an order on all of N2. One can view A1 and A2 as corresponding to increasingness and
translation invariance, respectively. The final theorem requires a lemma. The purpose of the
lemma is as follows. We know that sequences of numbers generate the same system when they are
powers of each other, and we just showed that this is actually the only case. Thus we should be
able to generate unique values of the primes given an order of prime powers if we choose a value
of the first prime (the values of all the integers are in turn determined by the values of the primes,
hence why we only need to care about the order of prime powers.) We could the write the value of
any kth prime as a real (and non-integral) power of the first prime, power(k). We can bound any
power n of a kth prime by powers of the first prime, and if we choose some power fk(n) to give the
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maximum lower bound then fk(n) + 1 will give the minimum upper bound (if one of these bounds
need be nonstrict the other could be strict.) Now for any such n we have an inequality:

fk(n)

n
< power(k) <

fk(n) + 1

n

For example, with the natural numbers 3 ≈ 21.58496..., ie. power(2) = 1.58496 . . . (power(2) refers
to 3 as the second prime). Our first inequalities imply

2 < 3 < 4 =⇒ 1 < power(2) < 2

8 < 9 < 16 =⇒ 1.5 < power(2) < 2

16 < 27 < 32 =⇒ 1.33 . . . < power(2) < 1.66 . . .

Even after the first few inequalities, we are able to bound 1.5 < power(2) < 1.66 . . ., which
given p1 = 2 puts our guess for 3s value at 2.8284 . . . < 3 < 3.1718 . . . We would hope that
sup fk(n)n = power(n) or even that limn→∞

fk(n)
n = power(n) . (This basically is what I had hoped

before finding the Lapidus-Hilberdink paper, but I was never able to arrive at a proof.)
The following lemma aids in our proof of the theorem by showing a condition for which the

limit of fk(n)
n exists.

2.4 Lemma

Let f : N→ R be such that for all m,n ∈ N∣∣∣∣f(mn)

mn
− f(n)

n

∣∣∣∣ ≤ 1

n
(1)

then limn→∞
f(n)
n exists.

[Proof notes: show that f(n)
n is bounded. Then show that f(mn)

mn approaches the same limit as

lim inf f(n)
n (using the fact that there exists a sequence nk for which f(nk)

nk
approaches this limit).

Then use this to show that f(n)
n approaches this limit.]

2.5 Proof

By putting n = 1 into the condition (1) it follows that f(n)
n is bounded. Let

α = lim inf
n→∞

f(n)

n

By definition of α, there exists sequence nk tending to infinity with k such that

f(nk)

nk
→ α as k →∞

Hence, for fixed m ∈ N, we have f(mnk)
mnk

→ α as k →∞, since∣∣∣∣f(mnk)

mnk
− f(nk)

nk

∣∣∣∣ ≤ 1

nk

(and f(nk)
nk
→ α while 1

nk
→ 0) Now fix n ∈ N, put m = nk in the initial condition and let k →∞.

Then ∣∣∣∣f(nnk)

nnk
− f(n)

nk

∣∣∣∣ ≤ 1

n
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Since f(nnk)
nnk

→ α as m→∞ we have ∣∣∣∣f(n)

n
− α

∣∣∣∣ ≤ 1

n

and the result follows. �

2.6 Theorem

Given an order on N2 satisfying axioms A1-A3, there exists a generalized prime system P which
induces this order.

[Proof notes: Fix the kth prime. Bound the nth power of this prime (k, n) from below by some
maximal power fk(n) of p1 (so fk(n)+1 bounds it above). Note that this inequality is preserved if we
replace n by some mn (because it is simply a substitution), or if we multiply all the powers by some
m (due to translation invariance). We mix these these derived inequalities since the middle term
(k,mn) is the same. For this proof Lapidus specifically gives that the lefthand side of one inequality
is less than the righthand side of the other, since the inequalities have the same middle term, but
note that an even stronger result is quite obvious: since fk(mn) gives a maximal lower bound (and
hence fk(mn) gives a minimal upper bound) we have that the lower bound mfk(n) ≤ fk(mn) and
the upper bound m(fk(n) + 1) ≥ fk(mn). We can write this in one line:

(1,mfk(n)) ≤ (1, fk(mn)) ≤ (k,mn) < (1, fk(mn) + 1) ≤ (1,m(fk(n) + 1))

and it is even more apparent that the first term is less than the fourth term and the second term
is less than the fifth. Taking those two inequalities, we can create corresponding inequalities for
the exponents, since the inequalities are on powers of the same prime. These new inequalities can
be combined and adjusted so that the condition (1) of the Lemma is applicable. We define our

sequence of real numbers by letting pk = pαk
1 , where αk is the limit of fk(n)

n . At this point, letting

m → ∞ leads to our result, since inequalities pmn < pm
′

n′ on our sequence of real numbers imply
inequalities on fk(n), which in turn implies inequalities (m,n) < (m′, n′) on our ordering of N2.]

2.7 Proof

Fix k ∈ N. For n ∈ N, let fk(n) be the unique positive integer for which

(1, fk(n)) ≤ (k, n) < (1, fk(n) + 1) (2)

(*Im not sure why nonstrict inequality is necessary here (for k=1?), but it doesnt really matter.)
This exists on account of A2 and A3, and is unique by A1. Replacing n by mn, we have

(1, fk(mn)) ≤ (k,mn) < (1, fk(mn) + 1) (3)

On the other hand, A2 implies that (given the first equation, (2))

(1,mfk(n)) ≤ (k,mn) < (1,m(fk(n) + 1)) (4)

(3) and (4) give

(1, fk(mn)) < (1,m(fk(n) + 1)), and

(1,mfk(n)) < (1, fk(mn) + 1)
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These inequalities involve the same prime base and thus we can apply the inequality to their
exponents

fk(mn) < mfk(n) +m and (5)

mfk(n) < fk(mn) + 1 (6)

Combining these and dividing through by mn gives

fk(n)

n
− 1

mn
<
f(mn)

mn
<
fk(n)

n
+

1

n
(7)

Thus fk(n) satisfies the condition of the Lemma (1), that its distance from f(mn)
mn is less than

1
n . This means that fk(n)

n → αk for some αk. Now choose some p1 > 1 and define a system of
generalized primes such that pk = pαk

1 . We shall prove that this system induces the given ordering
on prime powers.

Letting m→∞ in (6) we have that

fk(n) < nαk < fk(n) + 1

If pnm < pnm (i.e. nαm < nαm) then,

fm(n) ≤ nαm < nαm ≤ fm(n) + 1

Since fm(n) and fm(n) are integers, this implies that fm(n) ≤ fm(n), i.e. (m,n) ≤ (m,n). [The
equality case can be illustrated by example. Imagine the numbers 25 and 27 in the case of the natural
numbers. We have that p23 < p32, but that f3(2) = f2(3). However, blog2(253)c < blog2(273)c, so
f3(3 · 2) < f2(3 · 3). So we can amend the argument with a call to translation invariance.]

Now if (m,n) = (m,n), then (m, kn) = (m, kn) for all k ∈ N by A2. Hence fm(kn)
k = fm(kn)

k
and, letting k → ∞, we have nαm = nαm, i.e. pnm = pnm. This shows that pnm < pnm implies that
(m,n) < (m,n). �

This proof concludes Part 2 of the series and our introduction to the Beurling generalized
integers. The following articles in the series will explore the partial order that the generalized
integers impose on the set of factorizations.
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