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In this article we examine periodicity of divisibility for Beurling generalized integers, in various
forms.

Periodicity is of note in that it is the property which gives the primes their sort of statistical
nature. This is sometimes poetically described as the ”music” of the prime numbers. We note from
the onset that uniqueness of prime factorization is required since otherwise we dont have a good
definition for divisibility. This post will vary in its levels of mathematical formality as it covers a
topic that I have only begun to study. I’ll attempt to prove some statements, but unfortunately
others will just have to be left as hunches because their proofs elude me. The natural numbers
have periodicity of divisibility in the sense that every second number is even, every third number
is divisible by three, every fourth number is divisible by four, and so on. Other sequences may
exhibit weaker forms of periodicity.

If we take the natural numbers and sieve by a finite number of primes (including one that is not
2) we can observe such a weaker form of periodicity. For example, if we remove 2 and 3 as primes:

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 57

We dont have periodicity exactly, but due to the repeating +4,+2 pattern we have 2 out of
any 10 consecutive integers are divisible by 5. The previous example is a subset of the natural
numbers. Although not all sequences which are subsets of the natural numbers will have such
repeating patterns, a sequence which contains any non-whole number certainly wont have any
repeating patterns. We would still like to generalize periodicity to these cases. Consider taking the
natural numbers and adding π as a prime:

1 2 3 π 4 5 6 2π 7 8 9 3π π2

We no longer have repeating patterns, but we would expect any integer to be divisible by π more
often than 4 and less often than 3. In fact, on average we would expect N/π of any N consecutive
integers to be divisible by π. This weaker form of periodicity is more nuanced and will be the focus
of the rest of this post. We define the weaker forms of periodicity, then give a table summarizing
the types of periodicity discussed:

• Finite periodicity: There exists an N ∈ N such that for each integer i, exactly i out of Ni
consecutive integers are multiples of i.

• Weak Periodicity: Let dividesn(m) = 1 if the nth integer divides the mth, and be equal to

zero otherwise. Let Sn(m) =
m∑
k=1

dividesn(k). Then a system of Beurling generalized integers
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has weak periodicity if for all n ∈ N \ {1} the limit limm→∞
Sn(m)
m exists and

0 < lim
m→∞

Sn(m)

m
< 1

Here is the table:

Label Description Defined By

P0 Exact Periodicity N
Pf Finite Periodicity Finite Sieving

Pw Weak Periodicity 0 < limm→∞ Sn(m)/m < 1

Note the hierarchy:
P0 =⇒ Pf =⇒ Pw

Equivalent statements to Pw:

• limm→∞
Sn(m)
m = average frequency of divisibility by the nth integer.

• limm→∞
Sn(m)
m = 1/an, where {an} is the sequence of Beurling integers normalized so that

limm→∞
S2(m)
m = 1/a2.

The first statement isn’t entirely formal, but it also should be fairly obvious from the limit. The
second statement follows (in concept) from the isomorphism of Beurling integers to certain orders on
N2 (see this post), and will be proven later in this post. It turns out that this type of normalization
coincides with normalization in the sense of linearization of sequences with polynomial growth.
Weak periodicity is equivalent to the following two (rough) conditions:

• There cannot be ”too many” primes.

• There must be ”enough” primes.

To see this, note that if there are ”too many” primes Sn(m)
m → 0, while if there are ”too

few” Sn(m)
m → 1. Thus these conditions are necessary for weak periodicity. That these conditions

are sufficient will stem from our proof that certain bounds on the growth of the integer counting
function N(x) imply weak periodicity.

N(x) = the number of integers ≤ x

The growth of N(x) is tied to the growth of the primes.

π(x) = the number of primes ≤ x

(Note that π(n) 6= π(x). There are two different ways of generalizing the prime counting function:
as a function over the reals and as one over the natural numbers. π(n) = the number of primes
≤ the nth integer.) Unless otherwise noted, in this post a sequence an refers to our sequence of
generalized integers (and N(x) is the integer counting function associated with an).

Proposition 1: Weak periodicity is equivalent to the following statement:

0 < lim
x→∞

N(x)

N(cx)
< 1, ∀c > 1
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Proposition 2: If a Beurling system has uniqueness of prime factorization, weak periodicity
is equivalent to regular growth of the integer counting function N(x):

∃α > 0 such that ∀c > 0,
N(cx)

N(x)
∼ cα

Proposition 3: If a Beurling system has uniqueness of prime factorization, weak periodicity
is equivalent to saying that the Beurling system can be represented by a sequence with linear
asymptotic growth. By this we mean that there is a sequence an representing our system for which
for all y > 0

lim
x→∞

N(yx)

N(x)
= y

Furthermore, this normalized sequence an obeys the following statement:

an = lim
m→∞

m

Sn(m)

Before we prove the propositions we require some lemmas.
Lemma 1: limm→∞

Sn(m)
m and limx→∞

N(x)
N(anx)

are equal for all n, where an is our sequence of
Beurling integers.

Lemma 2: Suppose weak periodicity. Then for all y > 0

lim
x→∞

N(yx)

N(x)
exists

We note that for now Lemma 2 is unproven (though some justification for its assumption of truth
is provided). In the future I will amend this blog post, hopefully with a proof of Lemma 2.

Lemma 3: If the integer at index h is the product of the integers at indices f and g, then we
have:

lim
m→∞

Sh(m)

m
=

(
lim
m→∞

Sf (m)

m

)
·
(

lim
m→∞

Sg(m)

m

)
From an intuitive standpoint this makes sense as it is analogous to multiplying independent prob-
abilities.

Corollary 3: Let z = wy. Then

lim
x→∞

N(x)

N(zx)
=

(
lim
x→∞

N(x)

N(wx)

)
·
(

lim
x→∞

N(x)

N(yx)

)
(Given that the limits on the right side exist.) Let i(x, k) be the natural number power of p1 which

follows p
i(x,k)
1 ≤ xk < p

i(x,k)+1
1 . This function i(x, k) exists for xk > p1, and thus for any x > 1 there

exists a K such that i(x, k) exists for all k > K. Note that for x = pn we have that i(pn, k) = fn(k),
where fn(k) is the function defined in the proof in my previous post proving the isomorphism of
Beurling integers to certain orders on N2.

Lemma 4: Suppose that for all n ∈ N we have 0 < limm→∞ Sn(m)/m < 1 (weak periodicity),
then

lim
m→∞

m

Sn(m)
= pα1

where α = limk→∞
i(an,k)
k and p1 = limm→∞

m
S2(m) .

Corollary 4.1: Suppose that we have weak periodicity. Let y > 1. Then limx→∞
N(yx)
N(x) = pα1 ,

where α = limk→∞
i(y,k)
k and and p1 = limm→∞

m
S2(m) .
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Corollary 4.2: Suppose that we have weak periodicity. Let z < 1. Then limx→∞
N(zx)
N(x) = p−α1 ,

where α = limk→∞
i(1/z,k)

k and p1 = limm→∞
m

S2(m) . In Lemma 4 and its corollaries, note that

α > 0. That α ≥ 0 follows from the fact that 0 ≤ i(an,k)
k for all n and k. We require that

0 < limm→∞ Sn(m)/m because otherwise limm→∞m/Sn(m) diverges. The fact that α 6= 0 comes
from that limm→∞ Sn(m)/m < 1.

Lemma 5: if a system of Beurling integers was weak periodicity, the sequence

an = lim
m→∞

m

Sn(m)

represents it.
Lemma 6: Suppose that we have weak periodicity. For all y > 1 we have y = pα1 , where α =

limk→∞
i(y,k)
k and p1 = limm→∞

m
S2(m) . For all z < 1 we have z = p−α1 , where α = limk→∞

i(1/z,k)
k

and p1 = limm→∞
m

S2(m) .

Corollary 6: Suppose that we have weak periodicity. Let p1 = limm→∞
m

S2(m) . Then for all
y > 0

lim
x→∞

N(yx)

N(x)
= y

Proof of Lemma 1

Let bm = a−1(anam) be the subsequence of {1, 2, 3, 4, 5, ...} that is the index of multiples of an.
Then

Sn(bm) = N(am) = m and bm = N(anam)

So
Sn(bm)

bm
=

N(am)

N(anam)
(1)

Suppose limm→∞ Sn(m)/m = L. Then limm→∞ Sn(bm)/bm = L for any sequence bm of natural
numbers. Consider any xm tending to infinity. For large enough m there exists an i(m) ∈ N such
that

ai(m) ≤ xm < ai(m)+1

There exist bm = ai(m), cm = ai(m)+1 (nondecreasing sequences real numbers) such that

N(bm) = N(xm) = N(cm)− 1

and
N(anbm) ≤ N(anxm) < N(ancm)

so
N(cm)− 1

N(ancm)
<

N(xm)

N(anxm)
≤ N(bm)

N(anbm)

We take the limit as m→∞, discarding the ”-1” in N(cm)− 1:

lim
m→∞

N(cm)

N(ancm)
≤ lim

m→∞

N(xm)

N(anxm)
≤ lim

m→∞

N(bm)

N(anbm)

Given our equality (1) discussed before we have:

lim
m→∞

Sn(a−1(ancm))

a−1(ancm)
< lim

m→∞

N(xm)

N(anxm)
≤ lim

m→∞

Sn(a−1(anbm))

a−1(anbm)

4



By supposing that limm→∞Sn(m)/m = L we have that

L ≤ lim
m→∞

N(xm)

N(anxm)
≤ L

and thus limm→∞N(xm)/N(anxm) = L. Now suppose limx→∞N(x)/N(anx) = L. Letting xm =
am, we get from our equivalence (1) that

lim
m→∞

Sn(bm)

bm
= lim

m→∞

N(xm)

anxm
= L

where bm = a−1(anam) is the subsequence of {1, 2, 3, 4, 5, . . . } that is the index of multiples of an.
Since the limit exists, we have that

limm→∞
Sn(m)

m
= L

�

“Proof” of Lemma 2

Suppose y > a1. It is easy to see that lim infx→∞N(yx)/N(x) and lim supx→∞N(yx)/N(x) exist
since the values are bounded:

N(anx)/N(x) < N(yx)/N(x) < N(an+1x)/N(x)

for some n. Unfortunately, it appears difficult to show that the limit superior and limit inferior are
equal. We can also show that limx→∞N(yx)/N(x) exists for all y of the form:

y =
ai
aj

where ai, aj ∈ {an}. That is, for all y in the generalized rationals associated with our system. To
prove this, suppose y and z are such that

lim
x→∞

N(yx)/N(x) and lim
x→∞

N(zx)/N(x) exist

Then
N(yxn)

N(zxn)
=
N(yxn)/N(x)

N(zxn)/N(x)
=
N(yz yn)

N(yn)

using the substitution xn = 1
zyn. Thus the limit

lim
n→∞

N(yz yn)

N(yn)
= lim

n→∞

N(yxn)/N(x)

N(zxn)/N(x)
=

limx→∞N(yx)/N(x)

limx→∞N(zx)/N(x)

If we could show that these generalized rationals are dense in the real numbers (like is the case with
the regular rationals), we could get arbitrarily good bounds on N(yx)/N(x) for any y > 1. The
typical procedure to prove density requires a maximum bound on the gaps between integers, which
we don’t have a priori. Weak periodicity does put a bound on growth, but the bound is precisely
what we are trying to prove in our propositions! Another way we could try to prove Lemma 2 is
to imagine taking our Beurling system and creating a new one by adding y as a prime (assuming
that y is not a generalized rational, which is fine since otherwise we know that the limit exists
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anyways.) It would seem reasonable that this new system also has weak periodicity, and that the
corresponding values of

lim
x→∞

N(yx)

N(x)

go unchanged. It would then follow that the limit exists. At the moment though this argument
remains as hand waving and I have yet to succeed making an actual proof by this method.

Proof of Lemma 3

It follows from a property of Sn(x):

Sh(x) = Sf (Sg(x)) = Sg(Sf (x))

which exists due to translation invariance (the numbers divisible by some integer f , ie. its multiples
f · {an} = f, fa1, fa2, . . . , retain the order of an). Formally, if

lim
m→∞

Sf (m)

m
= F , and lim

m→∞

Sg(m)

m
= G

then for any ε > 0 there exist Nf , Ng such that for any N ′f > Nf and for any N ′g > Ng we have∣∣∣∣∣Sf (N ′f )

N ′f
− F

∣∣∣∣∣ < ε, and

∣∣∣∣Sg(N ′g)N ′g
−G

∣∣∣∣ < ε

Which implies that

N ′f (F − ε) < Sf (N ′f ) < N ′f (F + ε), and N ′g(G− ε) < Sg(N
′
g) < N ′g(G+ ε)

Combining the two inequalities we can get an inequality for Sh(x). Let N ′ be such that N ′ > Ng

and Sg(N
′) > Nf . Then

(Sg(N
′))(F − ε) < Sf (Sg(N

′)) < (Sg(N
′))(F + ε)

so
N ′(G− ε)(F − ε) < Sf (Sg(N

′)) < N ′(G+ ε)(F + ε)

and
N ′(G− ε)(F − ε) < Sh(N ′) < N ′(G+ ε)(F + ε)

Thus for any ε > 0, there exists an Nh such that for all N ′ > Nh

(G− ε)(F − ε) < Sh(N ′)

N ′
< (G+ ε)(F + ε)

and we get that limm→∞ Sh(m)/m = FG. �
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Proof of Corollary 3

Suppose that

lim
x→∞

N(x)

N(wx)
= W and lim

x→∞

N(x)

N(yx)
= Y

By the definition of a limit, for all ε > 0, there exists Xw, Xy such that for all X ′w and for all X ′y∣∣∣∣ N(X ′w)

N(wX ′w)

∣∣∣∣ < ε and

∣∣∣∣ N(X ′y)

N(yX ′y)

∣∣∣∣ < ε

So
N(wX ′w)(W − ε) < N(X ′w) < N(wX ′w)(W + ε)

and
N(yX ′y)(Y − ε) < N(X ′y) < N(yX ′y)(Y + ε)

Let X ′y be large enough so that yX ′y > Xw (WLOG). Then

N(wyX ′y)(W − ε) < N(yX ′y) < N(wyXy)(W + ε)

and so
N(wyX ′y)(W − ε)(Y − ε) < N(X ′y) < N(wyX ′y)(W + ε)(Y + ε)

dividing through by N(wyX ′y) we get

(W − ε)(Y − ε) <
N(X ′y)

N(wyX ′y)
< (W + ε)(Y + ε)

Thus for all ε > 0 there exists an X such that for all X ′ > X

(W − ε)(Y − ε) < N(X ′)

N(wyX ′)
< (W + ε)(Y + ε)

and so we have that limx→∞ N(X′)
N(wyX′) = WY . �

Proof of Lemma 4

For any n and any k, we have the inequality

p
i(an,k)
1 < akn < p

i(an,k)+1
1

This implies that
S
a−1(p

i(an,k)
1 )

(m) < Sa−1(akn)
(m) < Si(an,k)+1(m)

Dividing by m and taking limits, we get

lim
m→∞

m

S
a−1(p

i(an,k)+1
1 )

(m)
≤ lim

m→∞

m

Sa−1(akn)
(m)

≤ lim
m→∞

m

S
a−1(p

i(an,k)
1 )

(m)

By the third lemma we can take out the powers in the limits(
lim
m→∞

m

S2(m)

)i(an,k)
≤
(

lim
m→∞

m

Sn(m)

)k
≤
(

lim
m→∞

m

S2(m)

)i(an,k)+1
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Taking the kth root, we get(
lim
m→∞

m

S2(m)

) i(an,k)
k

≤
(

lim
m→∞

m

Sn(m)

)
≤
(

lim
m→∞

m

S2(m)

) i(an,k)+1
k

We can let p1 = limm→∞
m

S2(m) and let α = limk→∞ i(an, k)/k. We then get that

pα1 ≤ lim
m→∞

m

Sn(m)
≤ pα1

Thus we have
lim
m→∞

m

Sn(m)
= pα1

�

Proof of Corollary 4.1

the fact that y > 1 is important because it implies that there exists a K such that for all k > K,
i(y, k) exists. Thus the limit α = limk→∞

i(y,k)
k exists. This proof is very similar to the previous

proof of lemma 4, but it’s worth running through in its entirety to make sure that we don’t miss
the places where it differs. For any y > 1 (y ∈ R) and for any k ∈ N we have

p
i(y,k)
1 < yk < p

i(y,k)+1
1

This implies that

N(p
i(y,k)
1 x) ≤ N(ykx) ≤ N(p

i(y,k)+1
1 x)

and so
N(p

i(y,k)+1
1 x)

N(x)
≤ N(ykx)

N(x)
≤ N(p

i(y,k)
1 x)

N(x)

Taking limits, we get

lim
x→∞

N(p
i(y,k)+1
1 x)

N(x)
≤ lim

x→∞

N(ykx)

N(x)
≤ lim

x→∞

N(p
i(y,k)
1 x)

N(x)

Using Corollary 3, we pull out the powers on the left and right sides (here we assume that the
middle limit exists, which needs to be proven in Lemma 2. This is currently a hole in the proof!)(

lim
x→∞

N(p1x)

N(x)

)i(y,k)+1

≤
(

lim
x→∞

N(yx)

N(x)

)k
≤
(

lim
x→∞

N(p1x)

N(x)

)i(y,k)
Using Lemma 1, we have(

lim
m→∞

m

S2(m)

)i(y,k)+1

≤
(

lim
x→∞

N(yx)

N(x)

)k
≤
(

lim
m→∞

m

S2(m)

)i(y,k)
and letting p1 = limm→∞m/S2(m), we have

p
i(y,k)+1

k
1 ≤ lim

x→∞

N(yx)

N(x)
≤ p

i(y,k)
k

1

so we have that

lim
x→∞

N(yx)

N(x)
= pα1

�
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Proof of Corollary 4.2

Let y = 1/z. Then y > 1, and we can invoke Corollary 4. Let ym = xm/z, where xm is any
divergent sequence of real numbers.

1

limx→∞
N(zx)
N(x)

= lim
x→∞

N(x)

N(zx)
= lim

m→∞

N(ym)

N(zym)
= lim

m→∞

N(yxm)

N(xm)
= pα1

Thus, limx→∞
N(zx)
N(x) = p−α1 , where α = limk→∞

i(1/z,k)
k . �

Proof of Lemma 5

Lemma 5 follows directly from Lemma 4, since the value α is the same value used in the proof of the
isomorphism of orders on N2 to Beurling integers. Though stated as a lemma, this is a fundamental
result on its own.

Proof of Lemma 6

Suppose that y ¿ 1. Remember that α = limk→∞i(y, k)/k. By the definition of a limit, for any
ε > 0 there exists a K such for all k > K∣∣∣∣ i(y, k)

k
− α

∣∣∣∣ < ε

so

α− ε < i(y, k)

k
< α+ ε

Since p
i(y,k)
1 < yk < p

i(y,k)+1
1 , this implies that

pα−ε1 < y < pα+ε1

Thus we have that y = pα1 . If z < 1, then just apply the argument above to y = 1/z to get our
result.

Proof of Corollary 6

This follows from Lemma 6 and corollaries 4.1 and 4.2.

Proof of Proposition 1

From Lemma 1 it is clear that the statement in Proposition 1 implies weak periodicity. In the other
direction, from Lemma 6 and Corollary 6 we have that weak periodicity implies the statement in
Proposition 1 because

lim
x→∞

N(yx)

N(x)
=

(
lim
m→∞

m

S2(m)

)limk→∞
i(y,k)

k

Remember that limm→∞
m

S2(m) > 1 and limk→∞
i(y,k)
k > 0, so limx→∞

N(yx)
N(x) > 1.
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Proof of Proposition 2

It is clear that the statement of regular growth implies the statement in Proposition 1, so regular
growth implies weak periodicity. From corollaries 4.1 and 4.2, we can see that weak periodicity also
implies regular growth.

Proof of Proposition 3

First we provide the proof from the direction assuming weak periodicity. Weak periodicity implies
that the limit limm→∞ Sn(m)/m exists. Thus any subsequence produces the same limit. Let an be
our sequence of Beurling generalized integers with weak periodicity. Let bn be any subsequence of
an. Consider the subsequence of an formed by:

p1b1, p1b2, . . . p1bk, . . .

Note that the number of integers divisible by p1 less than or equal to p1bk is equal to the index of
bk:

S2(a
−1(p1bk)) = a−1(bk)

So if we take our limit using the indices of this subsequence we get

lim
k→∞

S2(a
−1(p1bk))

a−1(p1bk)
= lim

k→∞

a−1(bk)

a−1(p1bk)

This limit is equivalent to

lim
k→∞

N(bk)

N(p1bk)

For any divergent sequence of real numbers xn (xn > 1) we can construct two corresponding
sequences bn and cn which take values from an and obey the inequality:

N(bk)− 1

N(p1bk)
≤ N(xk)

N(p1xk)
≤ N(ck)

N(p1ck)

The construction is as follows. For any large enough k there exists an m such that am ≤ xk < am+1.
Thus p1am ≤ p1xk < p1am+1. We let bk = am+1 be the closest integer just above xk and we let
ck = am be the closest integer just below or equal to xk. (We note that this construction may lead
to sequences bn and cn which are not strictly increasing and therefore not exactly subsequences of
an, but strict monotonicity is not important here.) We have that N(bk)− 1 = N(xk) = N(ck), and
N(p1ck) ≤ N(p1pk) ≤ N(p1bk), and the inequality follows. The fact that N(x) diverges to infinity
means that the −1 in the left side of the inequality can be ignored for the purpose of taking limits.
From our assumption of weak periodicity, the left side and the right side of the inequality both
have the same limit, and so then the middle does as well. Thus we get

0 < lim
x→∞

N(x)

N(p1x)
< 1

Now in the other direction we have a similar method. For any sequence of real numbers xn (xn > 1)
we have

lim
n→∞

N(xn)

N(p1xn)
= lim

x→∞

N(x)

N(p1x)
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In particular, this is true for xn = an, our sequence of Beurling generalized integers. Thus we have

0 < lim
m→∞

S2(m)

m
< 1

To show that

0 < lim
m→∞

Sn(m)

m
< 1

for any n, we recall the isomorphism of Beurling integers to an order on prime factorizations. From
this we can take any integer an and give an inequality with powers of p1, ie. for any n there is a j
such that pj1 ≤ an < pj+1

1 . This implies that

lim
m→∞

Sq(m)

m
≤ lim

m→∞

Sn(m)

m
≤ lim

m→∞

Sr(m)

m

where q and r are the indices of these prime powers. By our lemma, these limits on the left and
right sides of the inequality are strictly bounded between 0 and 1, since they are finite powers of
the limit limm→∞ S2(m)/m on p1. Finally, we have that for all n > 1

0 < lim
m→∞

Sn(m)

m
< 1

�

Remarks

We end with some remarks on the relevance of periodicity. Top researchers in the field have com-
mented that conditions on additive structure are probably necessary for Beurling integers to satisfy a
generalized Riemann Hypothesis (see Matthew Watkins’ discussion with Professor Harold Diamond
about equal spacing: http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/beurling.htm). Jef-
frey Lagarias suggested the Delone property as one such condition. The Delone property states
that there are positive constants r and R such that for all n ∈ N

r ≤ an+1 − an ≤ R

where an is our sequence of Beurling integers. The Delone property implies uniqueness of prime
factorization since integers must all have multiplicity one.

In his paper (http://www.math.lsa.umich.edu/ lagarias/doc/beurling.pdf), Lagarias focuses on
the case where an is a subsequence of the natural numbers. He proves that this case is exactly
when an is generated by some finite change to the ordinary primes: taking some primes out, and
possibly putting some new ones in (eg. 4 could become a prime if 2 was taken out.) We can see
from this that Finite Periodicity implies the Delone property (moreover, the values r and R would
be the minimum and maximum gaps in the periodic pattern of the system with finite periodicity).
On the other hand, by its definition the Delone property implies that there exists a bound on the
growth of an:

c1x < N(x) < c2x

for some constants c1 and c2. This is not quite enough to guarantee regular growth, but it is very
close.
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If a system of Beurling integers has uniqueness of prime factorization and satisfies limn→∞
an
n =

α for some α > 0 (ie. an ∼ αn), then it also has the Delone property since gaps between integers
approach α as n→∞. I would like to think that the property in proposition 3

lim
x→∞

N(yx)

N(x)
= y, ∀y > 0

implies such a linearity condition, but I am not sure if this is true. If this were true, it would mean
that when there is uniqueness of prime factorization, a property on the growth of N(x) implies a
condition on additive structure, which seems to go against the general intuition of researchers in
the field. So there may be some error in my reasoning here.

In the discussion of Lemma 2 we mentioned the density of generalized rationals in the real
numbers. It is clear that infinitude of integers (which implies a sort of Archimedean property)
and a maximum bound on the gaps between integers imply such density (see here). It might be
interesting to study the relationship between weak periodicity and density of generalized rationals,
or just generalized rationals in their own right.

Although weak periodicity is not a condition on additive structure, it does have some ties to
Delone property. It is also simply an important property from what we expect from the prime
numbers anyways, while not being too restrictive. For example, weak periodicity opens up the
Beurling numbers to probabilistic number theory.

12


